TY - JOUR
T1 - SignalP 6.0 predicts all five types of signal peptides using protein language models
AU - Teufel, Felix
AU - Almagro Armenteros, José Juan
AU - Johansen, Alexander Rosenberg
AU - Gíslason, Magnús Halldór
AU - Pihl, Silas Irby
AU - Tsirigos, Konstantinos D.
AU - Winther, Ole
AU - Brunak, Søren
AU - von Heijne, Gunnar
AU - Nielsen, Henrik
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022
Y1 - 2022
N2 - Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects all five SP types and is applicable to metagenomic data.
AB - Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects all five SP types and is applicable to metagenomic data.
U2 - 10.1038/s41587-021-01156-3
DO - 10.1038/s41587-021-01156-3
M3 - Comment/debate
C2 - 34980915
AN - SCOPUS:85122179157
VL - 40
SP - 1023
EP - 1025
JO - Nature Biotechnology
JF - Nature Biotechnology
SN - 1087-0156
ER -