Abstract
Controlling neuronal activity using implantable neural interfaces constitutes an important tool to understand and develop novel strategies against brain diseases. Infrared neurostimulation is a promising alternative to optogenetics for controlling the neuronal circuitry with high spatial resolution. However, bi-directional interfaces capable of simultaneously delivering infrared light and recording electrical signals from the brain with minimal inflammation have not yet been reported. Here, we have developed a soft fibre-based device using high-performance polymers which are >100-fold softer than conventional silica glass used in standard optical fibres. The developed implant is capable of stimulating the brain activity in localized cortical domains by delivering laser pulses in the 2 μm spectral region while recording electrophysiological signals. Action and local field potentials were recorded in vivo from the motor cortex and hippocampus in acute and chronic settings, respectively. Immunohistochemical analysis of the brain tissue indicated insignificant inflammatory response to the infrared pulses while the signal-to-noise ratio of recordings still remained high. Our neural interface constitutes a step forward in expanding infrared neurostimulation as a versatile approach for fundamental research and clinically translatable therapies.
Original language | English |
---|---|
Article number | 127 |
Journal | Light: Science and Applications |
Volume | 12 |
Number of pages | 14 |
ISSN | 2095-5545 |
DOIs | |
Publication status | Published - 2023 |