TY - JOUR
T1 - Spatial-temporal patterns of foliar and bulk soil 15N isotopic signatures across a heterogeneous landscape
T2 - Linkages to soil N status, nitrate leaching, and N2O fluxes
AU - Wangari, Elizabeth Gachibu
AU - Mwanake, Ricky Mwangada
AU - Houska, Tobias
AU - Kraus, David
AU - Kikowatz, Hanna-Marie
AU - Wolf, Benjamin
AU - Gettel, Gretchen M.
AU - Breuer, Lutz
AU - Ambus, Per
AU - Kiese, Ralf
AU - Butterbach-Bahl, Klaus
N1 - Publisher Copyright:
© 2024
PY - 2024
Y1 - 2024
N2 - The natural abundance of plant and bulk soil 15N isotopic signatures provides valuable insights into the magnitude of nitrogen cycling and loss processes within terrestrial ecosystems. However, 15N isotopic signatures are highly variable in space due to natural and anthropogenic factors affecting N cycling processes and losses. To date, most studies on foliar and bulk soil 15N isotopic signatures have focused on N-limited forest ecosystems at relatively large spatial scales, while similar studies in N-enriched ecosystems at finer spatial scales are lacking. To address this gap and evaluate links between soil 15N isotopic signatures and ecosystem N cycling and loss processes (plant N uptake, N leaching, and gaseous loss), this study quantified foliar and bulk soil 15N isotopic signatures, soil physicochemical parameters, gaseous (N2O), and hydrological (NO3) N losses at 80 sites distributed across a heterogeneous landscape (∼5.8 km2). To account for the spatial-temporal heterogeneity, the measurements were performed in four campaigns (March, June, September 2022, and March 2023) at sites that considered different land uses, soil types, and topography. Results indicated that foliar and bulk soil 15N isotopic signatures were significantly (P < 0.05) more enriched in arable and grassland ecosystems than forests, suggesting a more open N cycle with significant N cycling and losses due to higher N inputs from fertilizers. Similar to soil inorganic N, N2O fluxes, and NO3 leaching rates, landscape-scale foliar and soil 15N isotopic signatures varied widely spatially, particularly at grassland and arable land (−3 to 9.0‰), with bivariate and multivariate analyses also showing significant relationships between landscape-scale soil 15N isotopic signatures and the aforementioned parameters (r2: 0.29 to 0.82). Based on these relationships, our findings suggested that foliar and bulk 15N isotopic signatures may capture fine-scale areas with persistently high and low environmental N losses (N2O fluxes and NO3 leaching) within a heterogeneous landscape.
AB - The natural abundance of plant and bulk soil 15N isotopic signatures provides valuable insights into the magnitude of nitrogen cycling and loss processes within terrestrial ecosystems. However, 15N isotopic signatures are highly variable in space due to natural and anthropogenic factors affecting N cycling processes and losses. To date, most studies on foliar and bulk soil 15N isotopic signatures have focused on N-limited forest ecosystems at relatively large spatial scales, while similar studies in N-enriched ecosystems at finer spatial scales are lacking. To address this gap and evaluate links between soil 15N isotopic signatures and ecosystem N cycling and loss processes (plant N uptake, N leaching, and gaseous loss), this study quantified foliar and bulk soil 15N isotopic signatures, soil physicochemical parameters, gaseous (N2O), and hydrological (NO3) N losses at 80 sites distributed across a heterogeneous landscape (∼5.8 km2). To account for the spatial-temporal heterogeneity, the measurements were performed in four campaigns (March, June, September 2022, and March 2023) at sites that considered different land uses, soil types, and topography. Results indicated that foliar and bulk soil 15N isotopic signatures were significantly (P < 0.05) more enriched in arable and grassland ecosystems than forests, suggesting a more open N cycle with significant N cycling and losses due to higher N inputs from fertilizers. Similar to soil inorganic N, N2O fluxes, and NO3 leaching rates, landscape-scale foliar and soil 15N isotopic signatures varied widely spatially, particularly at grassland and arable land (−3 to 9.0‰), with bivariate and multivariate analyses also showing significant relationships between landscape-scale soil 15N isotopic signatures and the aforementioned parameters (r2: 0.29 to 0.82). Based on these relationships, our findings suggested that foliar and bulk 15N isotopic signatures may capture fine-scale areas with persistently high and low environmental N losses (N2O fluxes and NO3 leaching) within a heterogeneous landscape.
KW - Cropland
KW - Forest
KW - Grassland
KW - Resins
KW - Soil profile patterns
KW - Stable nitrogen isotopes
KW - δN natural abundance
U2 - 10.1016/j.soilbio.2024.109609
DO - 10.1016/j.soilbio.2024.109609
M3 - Journal article
AN - SCOPUS:85205289376
VL - 199
JO - Soil Biology & Biochemistry
JF - Soil Biology & Biochemistry
SN - 0038-0717
M1 - 109609
ER -