TY - JOUR
T1 - Specific Sorting and Post-Golgi trafficking of Dendritic Potassium Channels in Living Neurons
AU - Jensen, Camilla Stampe
AU - Watanabe, Shoji
AU - Rasmussen, Hanne Borger
AU - Schmitt, Nicole
AU - Olesen, Søren-Peter
AU - Frost, Nicholas A
AU - Blanpied, Thomas A
AU - Misonou, Hiroaki
PY - 2014/2/25
Y1 - 2014/2/25
N2 - Proper membrane localization of ion channels is essential for the function of neuronal cells. Particularly, the computational ability of dendrites depends on the localization of different ion channels in specific sub-compartments. However, the molecular mechanisms which control ion channel localization in distinct dendritic sub-compartments are largely unknown. Here, we developed a quantitative live-cell imaging method to analyze protein sorting and post-Golgi vesicular trafficking. We focused on two dendritic voltage-gated potassium channels which exhibit distinct localizations; Kv2.1 in proximal dendrites and Kv4.2 in distal dendrites. Our results show that Kv2.1 and Kv4.2 channels are sorted into two distinct populations of vesicles at the Golgi apparatus. The targeting of Kv2.1 and Kv4.2 vesicles occurred by distinct mechanisms evidenced by their requirement for specific peptide motifs, cytoskeletal elements, and motor proteins. By live-cell and super-resolution imaging, we identified a novel trafficking machinery important for the localization of Kv2.1 channels. Particularly, we identified non-muscle myosin II as an important factor in Kv2.1 trafficking. These findings reveal that the sorting of ion channels at the Golgi apparatus and their subsequent trafficking by unique molecular mechanisms, are crucial for their specific localizations within dendrites.
AB - Proper membrane localization of ion channels is essential for the function of neuronal cells. Particularly, the computational ability of dendrites depends on the localization of different ion channels in specific sub-compartments. However, the molecular mechanisms which control ion channel localization in distinct dendritic sub-compartments are largely unknown. Here, we developed a quantitative live-cell imaging method to analyze protein sorting and post-Golgi vesicular trafficking. We focused on two dendritic voltage-gated potassium channels which exhibit distinct localizations; Kv2.1 in proximal dendrites and Kv4.2 in distal dendrites. Our results show that Kv2.1 and Kv4.2 channels are sorted into two distinct populations of vesicles at the Golgi apparatus. The targeting of Kv2.1 and Kv4.2 vesicles occurred by distinct mechanisms evidenced by their requirement for specific peptide motifs, cytoskeletal elements, and motor proteins. By live-cell and super-resolution imaging, we identified a novel trafficking machinery important for the localization of Kv2.1 channels. Particularly, we identified non-muscle myosin II as an important factor in Kv2.1 trafficking. These findings reveal that the sorting of ion channels at the Golgi apparatus and their subsequent trafficking by unique molecular mechanisms, are crucial for their specific localizations within dendrites.
U2 - 10.1074/jbc.M113.534495
DO - 10.1074/jbc.M113.534495
M3 - Journal article
C2 - 24569993
VL - 289
SP - 10566
EP - 10581
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
ER -