Abstract
We show that the “stabilization” of any countable ergodic probability measure preserving (p.m.p.) equivalence relation which is not Schmidt, i.e. admits no central sequences in its full group, always gives rise to a stable equivalence relation with a unique stable decomposition, providing the first non-strongly ergodic such examples. In the proof, we moreover establish a new local characterization of the Schmidt property. We also prove some new structural results for product equivalence relations and orbit equivalence relations of diagonal product actions.
Original language | English |
---|---|
Journal | Transactions of the American Mathematical Society |
Volume | 376 |
Issue number | 3 |
Pages (from-to) | 1867-1894 |
ISSN | 0002-9947 |
DOIs | |
Publication status | Published - 2023 |
Bibliographical note
Publisher Copyright:© 2022 American Mathematical Society.