TY - JOUR
T1 - Structure-activity relationship study of selective excitatory amino acid transporter subtype 1 (EAAT1) inhibitor 2-amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (UCPH-101) and absolute configurational assignment using infrared and vibrational circular dichroism spectroscopy in combination with ab initio hartree-fock calculations
AU - Huynh, Tri H. V.
AU - Shim, Irene
AU - Bohr, Henrik
AU - Abrahamsen, Bjarke
AU - Nielsen, Birgitte
AU - Jensen, Anders A.
AU - Bunch, Lennart
PY - 2012
Y1 - 2012
N2 - The excitatory amino acid transporters (EAATs) play essential roles in regulating the synaptic concentration of the neurotransmitter glutamate in the mammalian central nervous system. To date, five subtypes have been identified, named EAAT1-5 in humans, and GLAST, GLT-1, EAAC1, EAAT4, and EAAT5 in rodents, respectively. In this paper, we present the design, synthesis, and pharmacological evaluation of seven 7-N-substituted analogues of UCPH-101/102. Analogue 9 inhibited EAAT1 in the micromolar range (IC(50) value 20 µM), whereas analogues 8 and 10 were inactive (IC(50) values >100 µM). The diastereomeric pairs 11a/11b and 12a/12b were separated by HPLC and the absolute configuration assigned by VCD technique in combination with ab initio Hartree-Fock calculations. Analogues 11a (RS-isomer) and 12b (RR-isomer) inhibited EAAT1 (IC(50) values 5.5 and 3.8 µM, respectively), whereas analogues 11b (SS-isomer) and 12a (SR-isomer) failed to inhibit EAAT1 uptake (IC(50) values >300 µM).
AB - The excitatory amino acid transporters (EAATs) play essential roles in regulating the synaptic concentration of the neurotransmitter glutamate in the mammalian central nervous system. To date, five subtypes have been identified, named EAAT1-5 in humans, and GLAST, GLT-1, EAAC1, EAAT4, and EAAT5 in rodents, respectively. In this paper, we present the design, synthesis, and pharmacological evaluation of seven 7-N-substituted analogues of UCPH-101/102. Analogue 9 inhibited EAAT1 in the micromolar range (IC(50) value 20 µM), whereas analogues 8 and 10 were inactive (IC(50) values >100 µM). The diastereomeric pairs 11a/11b and 12a/12b were separated by HPLC and the absolute configuration assigned by VCD technique in combination with ab initio Hartree-Fock calculations. Analogues 11a (RS-isomer) and 12b (RR-isomer) inhibited EAAT1 (IC(50) values 5.5 and 3.8 µM, respectively), whereas analogues 11b (SS-isomer) and 12a (SR-isomer) failed to inhibit EAAT1 uptake (IC(50) values >300 µM).
U2 - 10.1021/jm300345z
DO - 10.1021/jm300345z
M3 - Journal article
C2 - 22594609
VL - 55
SP - 5403
EP - 5412
JO - Journal of Medicinal Chemistry
JF - Journal of Medicinal Chemistry
SN - 0022-2623
IS - 11
ER -