Sugar transporters enable a leaf beetle to accumulate plant defense compounds

Zhi Ling Yang, Hussam Hassan Nour-Eldin, Sabine Hänniger, Michael Reichelt, Christoph Crocoll, Fabian Seitz, Heiko Vogel, Franziska Beran*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

26 Citations (Scopus)
16 Downloads (Pure)

Abstract

Many herbivorous insects selectively accumulate plant toxins for defense against predators; however, little is known about the transport processes that enable insects to absorb and store defense compounds in the body. Here, we investigate how a specialist herbivore, the horseradish flea beetle, accumulates glucosinolate defense compounds from Brassicaceae in the hemolymph. Using phylogenetic analyses of coleopteran major facilitator superfamily transporters, we identify a clade of glucosinolate-specific transporters (PaGTRs) belonging to the sugar porter family. PaGTRs are predominantly expressed in the excretory system, the Malpighian tubules. Silencing of PaGTRs leads to elevated glucosinolate excretion, significantly reducing the levels of sequestered glucosinolates in beetles. This suggests that PaGTRs reabsorb glucosinolates from the Malpighian tubule lumen to prevent their loss by excretion. Ramsay assays corroborated the selective retention of glucosinolates by Malpighian tubules of P. armoraciae in situ. Thus, the selective accumulation of plant defense compounds in herbivorous insects can depend on the ability to prevent excretion.

Original languageEnglish
Article number2658
JournalNature Communications
Volume12
Issue number1
Number of pages12
ISSN2041-1723
DOIs
Publication statusPublished - 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

Cite this