TY - JOUR
T1 - [15O]H2O myocardial perfusion positron emission tomography
T2 - Added value of relative stress perfusion deficit in the prediction of significant coronary artery stenosis in a mixed population
AU - Mark, Peter D.
AU - Prescott, Eva
AU - Marner, Lisbeth
AU - Hovind, Peter
AU - Krakauer, Martin
N1 - Publisher Copyright:
© 2024 American Society of Nuclear Cardiology
PY - 2024
Y1 - 2024
N2 - Background: It remains unknown whether estimation of the relative stress perfusion deficit offers added value in the prediction of significant coronary artery stenosis in myocardial perfusion imaging with [15O]H2O positron emission tomography (PET) in a population with high prevalence of established cardiac disease. Methods: During eight months, we consecutively included all patients undergoing [15O]H2O PET and subsequent invasive coronary angiography (ICA). Significant stenosis was defined from ICA as fractional flow reserve ≤.8 or coronary artery narrowing of ≥70%. We calculated absolute and relative total perfusion deficits (aTPD and rTPD, respectively) as semiquantitative measures of the extent and severity of reduced stress perfusion. A multivariate logistic regression analysis was performed to test the adjusted associations (odds ratio (OR) with 95% CI) with significant coronary artery stenosis. Results: Of 800 patients undergoing [15O]H2O PET, 144 underwent ICA, where 142 patients had aTPD of ≥3% and 79 (55%) of these had at least one significant stenosis. In an adjusted analysis, rTPD (OR10% increase = 2.12 (1.44-3.12), P < .001), previous coronary artery bypass grafting (CABG) (OR = .11 (.03-.36), P < .001) and reduced left ventricular ejection fraction (LVEF) (OR = .25 (.08-.84), P = .02) were independently associated with significant stenosis, whereas the association with aTPD (OR10% increase = 1.14 (.98-1.32), P = .08) was modest. Conclusions: In the presence of an absolute perfusion deficit (aTPD of ≥3%), rTPD may improve the prediction of significant stenosis in a heterogeneous population of patients examined with [15O]H2O PET. Furthermore, previous CABG and reduced LVEF are associated with nonstenotic perfusion deficiencies, suggesting caution when interpreting myocardial perfusion imaging in such patients.
AB - Background: It remains unknown whether estimation of the relative stress perfusion deficit offers added value in the prediction of significant coronary artery stenosis in myocardial perfusion imaging with [15O]H2O positron emission tomography (PET) in a population with high prevalence of established cardiac disease. Methods: During eight months, we consecutively included all patients undergoing [15O]H2O PET and subsequent invasive coronary angiography (ICA). Significant stenosis was defined from ICA as fractional flow reserve ≤.8 or coronary artery narrowing of ≥70%. We calculated absolute and relative total perfusion deficits (aTPD and rTPD, respectively) as semiquantitative measures of the extent and severity of reduced stress perfusion. A multivariate logistic regression analysis was performed to test the adjusted associations (odds ratio (OR) with 95% CI) with significant coronary artery stenosis. Results: Of 800 patients undergoing [15O]H2O PET, 144 underwent ICA, where 142 patients had aTPD of ≥3% and 79 (55%) of these had at least one significant stenosis. In an adjusted analysis, rTPD (OR10% increase = 2.12 (1.44-3.12), P < .001), previous coronary artery bypass grafting (CABG) (OR = .11 (.03-.36), P < .001) and reduced left ventricular ejection fraction (LVEF) (OR = .25 (.08-.84), P = .02) were independently associated with significant stenosis, whereas the association with aTPD (OR10% increase = 1.14 (.98-1.32), P = .08) was modest. Conclusions: In the presence of an absolute perfusion deficit (aTPD of ≥3%), rTPD may improve the prediction of significant stenosis in a heterogeneous population of patients examined with [15O]H2O PET. Furthermore, previous CABG and reduced LVEF are associated with nonstenotic perfusion deficiencies, suggesting caution when interpreting myocardial perfusion imaging in such patients.
KW - Myocardial perfusion imaging
KW - Relative flow reserve
KW - Total perfusion deficit
KW - [O]HO PET
U2 - 10.1016/j.nuclcard.2024.101880
DO - 10.1016/j.nuclcard.2024.101880
M3 - Journal article
C2 - 38710439
AN - SCOPUS:85194496120
VL - 37
JO - Journal of Nuclear Cardiology
JF - Journal of Nuclear Cardiology
SN - 1071-3581
M1 - 101880
ER -