Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/¿-hydroxylase/20-HETE pathways

Ryuji Inoue, Lars Jørn Jensen, Zhong Jian, Juan Shi, Lin Hai, Andrew I. Lurie, Freja Herborg Henriksen, Max Salomonsson, Hiromitsu Morita, Yasuhiro Kawarabayashi, Masayuki Mori, Yasuo Mori, Yushi Ito

Research output: Contribution to journalJournal articleResearchpeer-review

145 Citations (Scopus)

Abstract

TRPC6 is a non-voltage-gated Ca(2+) entry/depolarization channel associated with vascular tone regulation and remodeling. Expressed TRPC6 channel responds to both neurohormonal and mechanical stimuli, the mechanism for which remains controversial. In this study, we examined the possible interactions of receptor and mechanical stimulations in activating this channel using the patch clamp technique. In HEK293 cells expressing TRPC6, application of mechanical stimuli (hypotonicity, shear, 2,4,6-trinitrophenol) caused, albeit not effective by themselves, a prominent potentiation of cationic currents (I(TRPC6)) induced by a muscarinic receptor agonist carbachol. This effect was insensitive to a tarantula toxin GsMTx-4 (5 mumol/L). A similar extent of mechanical potentiation was observed after activation of I(TRPC6) by GTPgammaS or a diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG). Single TRPC6 channel activity evoked by carbachol was also enhanced by a negative pressure added in the patch pipette. Mechanical potentiation of carbachol- or OAG-induced I(TRPC6) was abolished by small interfering RNA knockdown of cytosolic phospholipase A(2) or pharmacological inhibition of omega-hydroxylation of arachidonic acid into 20-HETE (20-hydroxyeicosatetraenoic acid). Conversely, direct application of 20-HETE enhanced both OAG-induced macroscopic and single channel TRPC6 currents. Essentially the same results were obtained for TRPC6-like cation channel in A7r5 myocytes, where its activation by noradrenaline or Arg8 vasopressin was greatly enhanced by mechanical stimuli via 20-HETE production. Furthermore, myogenic response of pressurized mesenteric artery was significantly enhanced by weak receptor stimulation dependently on 20-HETE production. These results collectively suggest that simultaneous operation of receptor and mechanical stimulations may synergistically amplify transmembrane Ca(2+) mobilization through TRPC6 activation, thereby enhancing the vascular tone via phospholipase C/diacylglycerol and phospholipase A(2)/omega-hydroxylase/20-HETE pathways.
Original languageEnglish
JournalCirculation Research
Volume104
Issue number12
Pages (from-to)1399-1409
Number of pages11
ISSN0009-7330
DOIs
Publication statusPublished - 2009

Cite this