Abstract
L-type voltage gated Ca(2+) channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca(2+) channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pressures (40-80 mm Hg) T-type channels affect myogenic responses in cerebral and mesenteric vascular beds. T-type channels also seem to be involved in skeletal muscle autoregulation. This review discusses the expression and role of T-type voltage gated Ca(2+) channels in the autoregulation of several different vascular beds. Lack of specific pharmacological inhibitors has been a huge challenge in the field. Now the research has been strengthened by genetically modified models such as mice lacking expression of T-type voltage gated Ca(2+) channels (CaV3.1 and CaV3.2). Hopefully, these new tools will help further elucidate the role of voltage gated T-type Ca(2+) channels in autoregulation and vascular function.
Original language | English |
---|---|
Journal | Channels (Austin) |
Volume | 11 |
Issue number | 3 |
Pages (from-to) | 183-195 |
Number of pages | 13 |
ISSN | 1933-6950 |
DOIs | |
Publication status | Published - 2017 |