TY - JOUR
T1 - The Cysteine Protease Legumain Is Upregulated by Vitamin D and Is a Regulator of Vitamin D Metabolism in Mice
AU - Forbord, Karl Martin
AU - Okla, Meshail
AU - Lunde, Ngoc Nguyen
AU - Bosnjak-Olsen, Tatjana
AU - Arnekleiv, Guro
AU - Hesselson, Daniel
AU - Johansen, Harald Thidemann
AU - Tang, Jonathan C.Y.
AU - Kassem, Moustapha
AU - Solberg, Rigmor
AU - Jafari, Abbas
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2024
Y1 - 2024
N2 - Legumain is a lysosomal cysteine protease that has been implicated in an increasing amount of physiological and pathophysiological processes. However, the upstream mechanisms regulating the expression and function of legumain are not well understood. Here, we provide in vitro and in vivo data showing that vitamin D3 (VD3) enhances legumain expression and function. In turn, legumain alters VD3 bioavailability, possibly through proteolytic cleavage of vitamin D binding protein (VDBP). Active VD3 (1,25(OH)2D3) increased legumain expression, activity, and secretion in osteogenic cultures of human bone marrow stromal cells. Upregulation of legumain was also observed in vivo, evidenced by increased legumain mRNA in the liver and spleen, as well as increased legumain activity in kidneys from wild-type mice treated with 25(OH)D3 (50 µg/kg, subcutaneously) for 8 days compared to a control. In addition, the serum level of legumain was also increased. We further showed that active legumain cleaved purified VDBP (55 kDa) in vitro, forming a 45 kDa fragment. In vivo, no VDBP cleavage was found in kidneys or liver from legumain-deficient mice (Lgmn−/−), whereas VDBP was cleaved in wild-type control mice (Lgmn+/+). Finally, legumain deficiency resulted in increased plasma levels of 25(OH)D3 and total VD3 and altered expression of key renal enzymes involved in VD3 metabolism (CYP24A1 and CYP27B1). In conclusion, a regulatory interplay between VD3 and legumain is suggested.
AB - Legumain is a lysosomal cysteine protease that has been implicated in an increasing amount of physiological and pathophysiological processes. However, the upstream mechanisms regulating the expression and function of legumain are not well understood. Here, we provide in vitro and in vivo data showing that vitamin D3 (VD3) enhances legumain expression and function. In turn, legumain alters VD3 bioavailability, possibly through proteolytic cleavage of vitamin D binding protein (VDBP). Active VD3 (1,25(OH)2D3) increased legumain expression, activity, and secretion in osteogenic cultures of human bone marrow stromal cells. Upregulation of legumain was also observed in vivo, evidenced by increased legumain mRNA in the liver and spleen, as well as increased legumain activity in kidneys from wild-type mice treated with 25(OH)D3 (50 µg/kg, subcutaneously) for 8 days compared to a control. In addition, the serum level of legumain was also increased. We further showed that active legumain cleaved purified VDBP (55 kDa) in vitro, forming a 45 kDa fragment. In vivo, no VDBP cleavage was found in kidneys or liver from legumain-deficient mice (Lgmn−/−), whereas VDBP was cleaved in wild-type control mice (Lgmn+/+). Finally, legumain deficiency resulted in increased plasma levels of 25(OH)D3 and total VD3 and altered expression of key renal enzymes involved in VD3 metabolism (CYP24A1 and CYP27B1). In conclusion, a regulatory interplay between VD3 and legumain is suggested.
KW - asparaginyl endopeptidase
KW - legumain
KW - metabolism
KW - proteolysis
KW - vitamin D
U2 - 10.3390/cells13010036
DO - 10.3390/cells13010036
M3 - Journal article
C2 - 38201240
AN - SCOPUS:85181918560
VL - 13
JO - Cells
JF - Cells
SN - 2073-4409
IS - 1
M1 - 36
ER -