The p21-activated kinase 2 (PAK2), but not PAK1, regulates contraction-stimulated skeletal muscle glucose transport

Research output: Contribution to journalJournal articleResearchpeer-review

7 Citations (Scopus)
60 Downloads (Pure)

Abstract

Aim: Muscle contraction stimulates skeletal muscle glucose transport. Since it occurs independently of insulin, it is an important alternative pathway to increase glucose transport in insulin-resistant states, but the intracellular signaling mechanisms are not fully understood. Muscle contraction activates group I p21-activated kinases (PAKs) in mouse and human skeletal muscle. PAK1 and PAK2 are downstream targets of Rac1, which is a key regulator of contraction-stimulated glucose transport. Thus, PAK1 and PAK2 could be downstream effectors of Rac1 in contraction-stimulated glucose transport. The current study aimed to test the hypothesis that PAK1 and/or PAK2 regulate contraction-induced glucose transport.

Methods: Glucose transport was measured in isolated soleus and extensor digitorum longus (EDL) mouse skeletal muscle incubated either in the presence or absence of a pharmacological inhibitor (IPA-3) of group I PAKs or originating from whole-body PAK1 knockout, muscle-specific PAK2 knockout or double whole-body PAK1 and muscle-specific PAK2 knockout mice.

Results: IPA-3 attenuated (-22%) the increase in glucose transport in response to electrically stimulated contractions in soleus and EDL muscle. PAK1 was dispensable for contraction-stimulated glucose transport in both soleus and EDL muscle. Lack of PAK2, either alone (-13%) or in combination with PAK1 (-14%), partly reduced contraction-stimulated glucose transport compared to control littermates in EDL, but not soleus muscle.

Conclusion: Contraction-stimulated glucose transport in isolated glycolytic mouse EDL muscle is partly dependent on PAK2, but not PAK1.

Original languageEnglish
Article numbere14460
JournalPhysiological Reports
Volume8
Issue number12
Number of pages13
ISSN2051-817X
DOIs
Publication statusPublished - 2020

Bibliographical note

© 2020 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.

Keywords

  • Faculty of Science
  • Contraction
  • Glucose uptake
  • p21-activated kinase
  • Skeletal muscle

Cite this