Abstract
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam’s science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
Original language | English |
---|---|
Article number | 47 |
Journal | Space Science Reviews |
Volume | 217 |
Issue number | 3 |
Number of pages | 108 |
ISSN | 0038-6308 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- Imaging on Mars
- Infrared spectroscopy
- Jezero crater
- LIBS
- Mars 2020 PERSEVERANCE rover
- Microphone on Mars
- Raman spectroscopy
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
The SuperCam Instrument Suite on the Mars 2020 Rover : Science Objectives and Mast-Unit Description. / Maurice, S.; Wiens, R. C.; Bernardi, P.; Caïs, P.; Robinson, S.; Nelson, T.; Gasnault, O.; Reess, J. M.; Deleuze, M.; Rull, F.; Manrique, J. A.; Abbaki, S.; Anderson, R. B.; André, Y.; Angel, S. M.; Arana, G.; Battault, T.; Beck, P.; Benzerara, K.; Bernard, S.; Berthias, J. P.; Beyssac, O.; Bonafous, M.; Bousquet, B.; Boutillier, M.; Cadu, A.; Castro, K.; Chapron, F.; Chide, B.; Clark, K.; Clavé, E.; Clegg, S.; Cloutis, E.; Collin, C.; Cordoba, E. C.; Cousin, A.; Dameury, J. C.; D’Anna, W.; Daydou, Y.; Debus, A.; Deflores, L.; Dehouck, E.; Delapp, D.; De Los Santos, G.; Donny, C.; Doressoundiram, A.; Dromart, G.; Dubois, B.; Dufour, A.; Dupieux, M.; Egan, M.; Ervin, J.; Fabre, C.; Fau, A.; Fischer, W.; Forni, O.; Fouchet, T.; Frydenvang, J.; Gauffre, S.; Gauthier, M.; Gharakanian, V.; Gilard, O.; Gontijo, I.; Gonzalez, R.; Granena, D.; Grotzinger, J.; Hassen-Khodja, R.; Heim, M.; Hello, Y.; Hervet, G.; Humeau, O.; Jacob, X.; Jacquinod, S.; Johnson, J. R.; Kouach, D.; Lacombe, G.; Lanza, N.; Lapauw, L.; Laserna, J.; Lasue, J.; Le Deit, L.; Le Mouélic, S.; Le Comte, E.; Lee, Q. M.; Legett, C.; Leveille, R.; Lewin, E.; Leyrat, C.; Lopez-Reyes, G.; Lorenz, R.; Lucero, B.; Madariaga, J. M.; Madsen, S.; Madsen, M.; Mangold, N.; Manni, F.; Mariscal, J. F.; Martinez-Frias, J.; Mathieu, K.; Mathon, R.; McCabe, K. P.; McConnochie, T.; McLennan, S. M.; Mekki, J.; Melikechi, N.; Meslin, P.-Y.; Micheau, Y.; Michel, Y.; Michel, J. M.; Mimoun, D.; Misra, A.; Montagnac, G.; Montaron, C.; Montmessin, F.; Moros, J.; Mousset, V.; Morizet, Y.; Murdoch, N.; Newell, R. T.; Newsom, H.; Nguyen Tuong, N.; Ollila, A. M.; Orttner, G.; Oudda, L.; Pares, L.; Parisot, J.; Parot, Y.; Pérez, R.; Pheav, D.; Picot, L.; Pilleri, P.; Pilorget, C.; Pinet, P.; Pont, G.; Poulet, F.; Quantin-Nataf, C.; Quertier, B.; Rambaud, D.; Rapin, W.; Romano, P.; Roucayrol, L.; Royer, C.; Ruellan, M.; Sandoval, B. F.; Sautter, V.; Schoppers, M. J.; Schröder, S.; Seran, H. C.; Sharma, S. K.; Sobron, P.; Sodki, M.; Sournac, A.; Sridhar, V.; Standarovsky, D.; Storms, S.; Striebig, N.; Tatat, M.; Toplis, M.; Torre-Fdez, I.; Toulemont, N.; Velasco, C.; Veneranda, M.; Venhaus, D.; Virmontois, C.; Viso, M.; Willis, P.; Wong, K. W.
In: Space Science Reviews, Vol. 217, No. 3, 47, 2021.Research output: Contribution to journal › Review › Research › peer-review
}
TY - JOUR
T1 - The SuperCam Instrument Suite on the Mars 2020 Rover
T2 - Science Objectives and Mast-Unit Description
AU - Maurice, S.
AU - Wiens, R. C.
AU - Bernardi, P.
AU - Caïs, P.
AU - Robinson, S.
AU - Nelson, T.
AU - Gasnault, O.
AU - Reess, J. M.
AU - Deleuze, M.
AU - Rull, F.
AU - Manrique, J. A.
AU - Abbaki, S.
AU - Anderson, R. B.
AU - André, Y.
AU - Angel, S. M.
AU - Arana, G.
AU - Battault, T.
AU - Beck, P.
AU - Benzerara, K.
AU - Bernard, S.
AU - Berthias, J. P.
AU - Beyssac, O.
AU - Bonafous, M.
AU - Bousquet, B.
AU - Boutillier, M.
AU - Cadu, A.
AU - Castro, K.
AU - Chapron, F.
AU - Chide, B.
AU - Clark, K.
AU - Clavé, E.
AU - Clegg, S.
AU - Cloutis, E.
AU - Collin, C.
AU - Cordoba, E. C.
AU - Cousin, A.
AU - Dameury, J. C.
AU - D’Anna, W.
AU - Daydou, Y.
AU - Debus, A.
AU - Deflores, L.
AU - Dehouck, E.
AU - Delapp, D.
AU - De Los Santos, G.
AU - Donny, C.
AU - Doressoundiram, A.
AU - Dromart, G.
AU - Dubois, B.
AU - Dufour, A.
AU - Dupieux, M.
AU - Egan, M.
AU - Ervin, J.
AU - Fabre, C.
AU - Fau, A.
AU - Fischer, W.
AU - Forni, O.
AU - Fouchet, T.
AU - Frydenvang, J.
AU - Gauffre, S.
AU - Gauthier, M.
AU - Gharakanian, V.
AU - Gilard, O.
AU - Gontijo, I.
AU - Gonzalez, R.
AU - Granena, D.
AU - Grotzinger, J.
AU - Hassen-Khodja, R.
AU - Heim, M.
AU - Hello, Y.
AU - Hervet, G.
AU - Humeau, O.
AU - Jacob, X.
AU - Jacquinod, S.
AU - Johnson, J. R.
AU - Kouach, D.
AU - Lacombe, G.
AU - Lanza, N.
AU - Lapauw, L.
AU - Laserna, J.
AU - Lasue, J.
AU - Le Deit, L.
AU - Le Mouélic, S.
AU - Le Comte, E.
AU - Lee, Q. M.
AU - Legett, C.
AU - Leveille, R.
AU - Lewin, E.
AU - Leyrat, C.
AU - Lopez-Reyes, G.
AU - Lorenz, R.
AU - Lucero, B.
AU - Madariaga, J. M.
AU - Madsen, S.
AU - Madsen, M.
AU - Mangold, N.
AU - Manni, F.
AU - Mariscal, J. F.
AU - Martinez-Frias, J.
AU - Mathieu, K.
AU - Mathon, R.
AU - McCabe, K. P.
AU - McConnochie, T.
AU - McLennan, S. M.
AU - Mekki, J.
AU - Melikechi, N.
AU - Meslin, P.-Y.
AU - Micheau, Y.
AU - Michel, Y.
AU - Michel, J. M.
AU - Mimoun, D.
AU - Misra, A.
AU - Montagnac, G.
AU - Montaron, C.
AU - Montmessin, F.
AU - Moros, J.
AU - Mousset, V.
AU - Morizet, Y.
AU - Murdoch, N.
AU - Newell, R. T.
AU - Newsom, H.
AU - Nguyen Tuong, N.
AU - Ollila, A. M.
AU - Orttner, G.
AU - Oudda, L.
AU - Pares, L.
AU - Parisot, J.
AU - Parot, Y.
AU - Pérez, R.
AU - Pheav, D.
AU - Picot, L.
AU - Pilleri, P.
AU - Pilorget, C.
AU - Pinet, P.
AU - Pont, G.
AU - Poulet, F.
AU - Quantin-Nataf, C.
AU - Quertier, B.
AU - Rambaud, D.
AU - Rapin, W.
AU - Romano, P.
AU - Roucayrol, L.
AU - Royer, C.
AU - Ruellan, M.
AU - Sandoval, B. F.
AU - Sautter, V.
AU - Schoppers, M. J.
AU - Schröder, S.
AU - Seran, H. C.
AU - Sharma, S. K.
AU - Sobron, P.
AU - Sodki, M.
AU - Sournac, A.
AU - Sridhar, V.
AU - Standarovsky, D.
AU - Storms, S.
AU - Striebig, N.
AU - Tatat, M.
AU - Toplis, M.
AU - Torre-Fdez, I.
AU - Toulemont, N.
AU - Velasco, C.
AU - Veneranda, M.
AU - Venhaus, D.
AU - Virmontois, C.
AU - Viso, M.
AU - Willis, P.
AU - Wong, K. W.
PY - 2021
Y1 - 2021
N2 - On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam’s science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
AB - On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam’s science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
KW - Imaging on Mars
KW - Infrared spectroscopy
KW - Jezero crater
KW - LIBS
KW - Mars 2020 PERSEVERANCE rover
KW - Microphone on Mars
KW - Raman spectroscopy
U2 - 10.1007/s11214-021-00807-w
DO - 10.1007/s11214-021-00807-w
M3 - Review
AN - SCOPUS:85104328436
VL - 217
JO - Space Science Reviews
JF - Space Science Reviews
SN - 0038-6308
IS - 3
M1 - 47
ER -