Abstract
The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam’s body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245–340 and 385–465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535–853 nm (105–7070cm−1 Raman shift relative to the 532 nm green laser beam) with 12cm−1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well.
Original language | English |
---|---|
Article number | 4 |
Journal | Space Science Reviews |
Volume | 217 |
Number of pages | 87 |
ISSN | 0038-6308 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- Infrared spectroscopy
- Jezero crater
- LIBS
- Mars
- Microphone on Mars
- Perseverance rover
- Raman spectroscopy
- SuperCam
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
The SuperCam Instrument Suite on the NASA Mars 2020 Rover : Body Unit and Combined System Tests. / Wiens, Roger C.; Maurice, Sylvestre; Robinson, Scott H.; Nelson, Anthony E.; Cais, Philippe; Bernardi, Pernelle; Newell, Raymond T.; Clegg, Sam; Sharma, Shiv K.; Storms, Steven; Deming, Jonathan; Beckman, Darrel; Ollila, Ann M.; Gasnault, Olivier; Anderson, Ryan B.; André, Yves; Michael Angel, S.; Arana, Gorka; Auden, Elizabeth; Beck, Pierre; Becker, Joseph; Benzerara, Karim; Bernard, Sylvain; Beyssac, Olivier; Borges, Louis; Bousquet, Bruno; Boyd, Kerry; Caffrey, Michael; Carlson, Jeffrey; Castro, Kepa; Celis, Jorden; Chide, Baptiste; Clark, Kevin; Cloutis, Edward; Cordoba, Elizabeth C.; Cousin, Agnes; Dale, Magdalena; Deflores, Lauren; Delapp, Dorothea; Deleuze, Muriel; Dirmyer, Matthew; Donny, Christophe; Dromart, Gilles; George Duran, M.; Egan, Miles; Ervin, Joan; Fabre, Cecile; Fau, Amaury; Fischer, Woodward; Forni, Olivier; Fouchet, Thierry; Fresquez, Reuben; Frydenvang, Jens; Gasway, Denine; Gontijo, Ivair; Grotzinger, John; Jacob, Xavier; Jacquinod, Sophie; Johnson, Jeffrey R.; Klisiewicz, Roberta A.; Lake, James; Lanza, Nina; Laserna, Javier; Lasue, Jeremie; Le Mouélic, Stéphane; Legett, Carey; Leveille, Richard; Lewin, Eric; Lopez-Reyes, Guillermo; Lorenz, Ralph; Lorigny, Eric; Love, Steven P.; Lucero, Briana; Madariaga, Juan Manuel; Madsen, Morten; Madsen, Soren; Mangold, Nicolas; Manrique, Jose Antonio; Martinez, J. P.; Martinez-Frias, Jesus; McCabe, Kevin P.; McConnochie, Timothy H.; McGlown, Justin M.; McLennan, Scott M.; Melikechi, Noureddine; Meslin, Pierre-Yves; Michel, John M.; Mimoun, David; Misra, Anupam; Montagnac, Gilles; Montmessin, Franck; Mousset, Valerie; Murdoch, Naomi; Newsom, Horton; Ott, Logan A.; Ousnamer, Zachary R.; Pares, Laurent; Parot, Yann; Pawluczyk, Rafal; Glen Peterson, C.; Pilleri, Paolo; Pinet, Patrick; Pont, Gabriel; Poulet, Francois; Provost, Cheryl; Quertier, Benjamin; Quinn, Heather; Rapin, William; Reess, Jean Michel; Regan, Amy H.; Reyes-Newell, Adriana L.; Romano, Philip J.; Royer, Clement; Rull, Fernando; Sandoval, Benigno; Sarrao, Joseph H.; Sautter, Violaine; Schoppers, Marcel J.; Schröder, Susanne; Seitz, Daniel; Shepherd, Terra; Sobron, Pablo; Dubois, Bruno; Sridhar, Vishnu; Toplis, Michael J.; Torre-Fdez, Imanol; Trettel, Ian A.; Underwood, Mark; Valdez, Andres; Valdez, Jacob; Venhaus, Dawn; Willis, Peter.
In: Space Science Reviews, Vol. 217, 4, 2021.Research output: Contribution to journal › Review › Research › peer-review
}
TY - JOUR
T1 - The SuperCam Instrument Suite on the NASA Mars 2020 Rover
T2 - Body Unit and Combined System Tests
AU - Wiens, Roger C.
AU - Maurice, Sylvestre
AU - Robinson, Scott H.
AU - Nelson, Anthony E.
AU - Cais, Philippe
AU - Bernardi, Pernelle
AU - Newell, Raymond T.
AU - Clegg, Sam
AU - Sharma, Shiv K.
AU - Storms, Steven
AU - Deming, Jonathan
AU - Beckman, Darrel
AU - Ollila, Ann M.
AU - Gasnault, Olivier
AU - Anderson, Ryan B.
AU - André, Yves
AU - Michael Angel, S.
AU - Arana, Gorka
AU - Auden, Elizabeth
AU - Beck, Pierre
AU - Becker, Joseph
AU - Benzerara, Karim
AU - Bernard, Sylvain
AU - Beyssac, Olivier
AU - Borges, Louis
AU - Bousquet, Bruno
AU - Boyd, Kerry
AU - Caffrey, Michael
AU - Carlson, Jeffrey
AU - Castro, Kepa
AU - Celis, Jorden
AU - Chide, Baptiste
AU - Clark, Kevin
AU - Cloutis, Edward
AU - Cordoba, Elizabeth C.
AU - Cousin, Agnes
AU - Dale, Magdalena
AU - Deflores, Lauren
AU - Delapp, Dorothea
AU - Deleuze, Muriel
AU - Dirmyer, Matthew
AU - Donny, Christophe
AU - Dromart, Gilles
AU - George Duran, M.
AU - Egan, Miles
AU - Ervin, Joan
AU - Fabre, Cecile
AU - Fau, Amaury
AU - Fischer, Woodward
AU - Forni, Olivier
AU - Fouchet, Thierry
AU - Fresquez, Reuben
AU - Frydenvang, Jens
AU - Gasway, Denine
AU - Gontijo, Ivair
AU - Grotzinger, John
AU - Jacob, Xavier
AU - Jacquinod, Sophie
AU - Johnson, Jeffrey R.
AU - Klisiewicz, Roberta A.
AU - Lake, James
AU - Lanza, Nina
AU - Laserna, Javier
AU - Lasue, Jeremie
AU - Le Mouélic, Stéphane
AU - Legett, Carey
AU - Leveille, Richard
AU - Lewin, Eric
AU - Lopez-Reyes, Guillermo
AU - Lorenz, Ralph
AU - Lorigny, Eric
AU - Love, Steven P.
AU - Lucero, Briana
AU - Madariaga, Juan Manuel
AU - Madsen, Morten
AU - Madsen, Soren
AU - Mangold, Nicolas
AU - Manrique, Jose Antonio
AU - Martinez, J. P.
AU - Martinez-Frias, Jesus
AU - McCabe, Kevin P.
AU - McConnochie, Timothy H.
AU - McGlown, Justin M.
AU - McLennan, Scott M.
AU - Melikechi, Noureddine
AU - Meslin, Pierre-Yves
AU - Michel, John M.
AU - Mimoun, David
AU - Misra, Anupam
AU - Montagnac, Gilles
AU - Montmessin, Franck
AU - Mousset, Valerie
AU - Murdoch, Naomi
AU - Newsom, Horton
AU - Ott, Logan A.
AU - Ousnamer, Zachary R.
AU - Pares, Laurent
AU - Parot, Yann
AU - Pawluczyk, Rafal
AU - Glen Peterson, C.
AU - Pilleri, Paolo
AU - Pinet, Patrick
AU - Pont, Gabriel
AU - Poulet, Francois
AU - Provost, Cheryl
AU - Quertier, Benjamin
AU - Quinn, Heather
AU - Rapin, William
AU - Reess, Jean Michel
AU - Regan, Amy H.
AU - Reyes-Newell, Adriana L.
AU - Romano, Philip J.
AU - Royer, Clement
AU - Rull, Fernando
AU - Sandoval, Benigno
AU - Sarrao, Joseph H.
AU - Sautter, Violaine
AU - Schoppers, Marcel J.
AU - Schröder, Susanne
AU - Seitz, Daniel
AU - Shepherd, Terra
AU - Sobron, Pablo
AU - Dubois, Bruno
AU - Sridhar, Vishnu
AU - Toplis, Michael J.
AU - Torre-Fdez, Imanol
AU - Trettel, Ian A.
AU - Underwood, Mark
AU - Valdez, Andres
AU - Valdez, Jacob
AU - Venhaus, Dawn
AU - Willis, Peter
PY - 2021
Y1 - 2021
N2 - The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam’s body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245–340 and 385–465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535–853 nm (105–7070cm−1 Raman shift relative to the 532 nm green laser beam) with 12cm−1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well.
AB - The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam’s body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245–340 and 385–465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535–853 nm (105–7070cm−1 Raman shift relative to the 532 nm green laser beam) with 12cm−1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well.
KW - Infrared spectroscopy
KW - Jezero crater
KW - LIBS
KW - Mars
KW - Microphone on Mars
KW - Perseverance rover
KW - Raman spectroscopy
KW - SuperCam
U2 - 10.1007/s11214-020-00777-5
DO - 10.1007/s11214-020-00777-5
M3 - Review
C2 - 33380752
AN - SCOPUS:85097911079
VL - 217
JO - Space Science Reviews
JF - Space Science Reviews
SN - 0038-6308
M1 - 4
ER -