Threshold-based Network Structural Dynamics

Evangelos Kipouridis, Paul Spirakis, K. Tsichlas

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

18 Downloads (Pure)

Abstract

The interest in dynamic processes on networks is steadily rising in recent years. In this paper, we consider the $(\alpha,\beta)$-Thresholded Network Dynamics ($(\alpha,\beta)$-Dynamics), where $\alpha\leq \beta$, in which only structural dynamics (dynamics of the network) are allowed, guided by local thresholding rules executed in each node. In particular, in each discrete round $t$, each pair of nodes $u$ and $v$ that are allowed to communicate by the scheduler, computes a value $\mathcal{E}(u,v)$ (the potential of the pair) as a function of the local structure of the network at round $t$ around the two nodes. If $\mathcal{E}(u,v) < \alpha$ then the link (if it exists) between $u$ and $v$ is removed; if $\alpha \leq \mathcal{E}(u,v) < \beta$ then an existing link among $u$ and $v$ is maintained; if $\beta \leq \mathcal{E}(u,v)$ then a link between $u$ and $v$ is established if not already present. The microscopic structure of $(\alpha,\beta)$-Dynamics appears to be simple, so that we are able to rigorously argue about it, but still flexible, so that we are able to design meaningful microscopic local rules that give rise to interesting macroscopic behaviors. Our goals are the following: a) to investigate the properties of the $(\alpha,\beta)$-Thresholded Network Dynamics and b) to show that $(\alpha,\beta)$-Dynamics is expressive enough to solve complex problems on networks. Our contribution in these directions is twofold. We rigorously exhibit the claim about the expressiveness of $(\alpha,\beta)$-Dynamics, both by designing a simple protocol that provably computes the $k$-core of the network as well as by showing that $(\alpha,\beta)$-Dynamics is in fact Turing-Complete. Second and most important, we construct general tools for proving stabilization that work for a subclass of $(\alpha,\beta)$-Dynamics and prove speed of convergence in a restricted setting.
Original languageEnglish
Title of host publicationStructural Information and Communication Complexity : 28th International Colloquium, SIROCCO 2021, Wrocław, Poland, June 28 – July 1, 2021, Proceedings
EditorsTomasz Jurdzińsk, Stefan Schmid
Number of pages19
PublisherSpringer
Publication date2021
Pages127-145
ISBN (Print)978-3-030-79526-9
ISBN (Electronic)978-3-030-79527-6
DOIs
Publication statusPublished - 2021
Event28th International Colloquium, SIROCCO 2021
- Wrocław, Poland
Duration: 28 Jun 20211 Jul 2021

Conference

Conference28th International Colloquium, SIROCCO 2021
Country/TerritoryPoland
CityWrocław
Period28/06/202101/07/2021
SeriesLecture Notes in Computer Science
Volume12810
ISSN0302-9743

Cite this