Abstract
Background
Forest soils are considered sinks for atmospheric C. Many studies revealed that tree species and their mycorrhizal association affect forest floor and topsoil organic C (OC) and total N, while the knowledge of their effect on subsoil OC and N is still scarce.
Aims
We aimed to identify (1) tree species and mycorrhizal association effects on forest floor, topsoil (0–30 cm) and subsoil (30–80 cm) OC and N stocks and vertical distribution and (2) drivers for soil OC and N distribution.
Methods
We sampled forest floor, topsoil and subsoil under Fagus sylvatica L., Quercus robur L., Acer pseudoplatanus L. and Fraxinus excelsior L. in four Danish common garden experiments along a gradient in soil texture and determined OC and N stocks.
Results
Total N (forest floor + soil) was higher under oak than beech, while total OC was unaffected by species. Forest floor C and N were higher under oak and beech, both ectomycorrhizal species (ECM), compared to under maple and ash, which are both arbuscular mycorrhizal species (AM). Relatively more OC and N were transferred to the topsoil under AM than ECM species, and this could be explained by greater endogeic earthworm biomass in AM species. In contrast, a higher proportion of OC was stored under ECM than AM species in the subsoil, and here OC correlated negatively with anecic earthworms. Subsoil N was highest under oak.
Conclusions
Tree species and in particular their mycorrhizal association affected the vertical distribution of soil OC and N. Tree species differences in topsoil OC and N were not mirrored in the subsoil, and this highlights the need to address the subsoil in future studies on AM- versus ECM-mediated soil OC and N stocks.
Forest soils are considered sinks for atmospheric C. Many studies revealed that tree species and their mycorrhizal association affect forest floor and topsoil organic C (OC) and total N, while the knowledge of their effect on subsoil OC and N is still scarce.
Aims
We aimed to identify (1) tree species and mycorrhizal association effects on forest floor, topsoil (0–30 cm) and subsoil (30–80 cm) OC and N stocks and vertical distribution and (2) drivers for soil OC and N distribution.
Methods
We sampled forest floor, topsoil and subsoil under Fagus sylvatica L., Quercus robur L., Acer pseudoplatanus L. and Fraxinus excelsior L. in four Danish common garden experiments along a gradient in soil texture and determined OC and N stocks.
Results
Total N (forest floor + soil) was higher under oak than beech, while total OC was unaffected by species. Forest floor C and N were higher under oak and beech, both ectomycorrhizal species (ECM), compared to under maple and ash, which are both arbuscular mycorrhizal species (AM). Relatively more OC and N were transferred to the topsoil under AM than ECM species, and this could be explained by greater endogeic earthworm biomass in AM species. In contrast, a higher proportion of OC was stored under ECM than AM species in the subsoil, and here OC correlated negatively with anecic earthworms. Subsoil N was highest under oak.
Conclusions
Tree species and in particular their mycorrhizal association affected the vertical distribution of soil OC and N. Tree species differences in topsoil OC and N were not mirrored in the subsoil, and this highlights the need to address the subsoil in future studies on AM- versus ECM-mediated soil OC and N stocks.
Original language | English |
---|---|
Journal | Journal of Plant Nutrition and Soil Science |
Volume | 185 |
Issue number | 6 |
Pages (from-to) | 864-875 |
Number of pages | 12 |
ISSN | 1522-2624 |
DOIs | |
Publication status | Published - 2022 |