TY - JOUR
T1 - Ultrasmall TPGS-PLGA Hybrid Nanoparticles for Site-Specific Delivery of Antibiotics into Pseudomonas aeruginosa Biofilms in Lungs
AU - Wan, Feng
AU - Bohr, Søren S.R.
AU - Kłodzińska, Sylvia Natalie
AU - Jumaa, Haidar
AU - Huang, Zheng
AU - Nylander, Tommy
AU - Thygesen, Mikkel Boas
AU - Sørensen, Kasper Kildegaard
AU - Jensen, Knud Jørgen
AU - Sternberg, Claus
AU - Hatzakis, Nikos
AU - Mørck Nielsen, Hanne
PY - 2020
Y1 - 2020
N2 - Inhaled antibiotic treatment of cystic fibrosis-related bacterial biofilm infections is challenging because of the pathological environment of the lungs. Here, we present an "environment-adaptive" nanoparticle composed of a solid poly lactic-co-glycolic acid (PLGA) core and a mucus-inert, enzymatically cleavable shell of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for the site-specific delivery of antibiotics to bacterial biofilms via aerosol administration. The hybrid nanoparticles with ultrasmall size were self-assembled via a nanoprecipitation process by using a facile microfluidic method. The interactions of the nanoparticles with the biological barriers were comprehensively investigated by using cutting-edge techniques (e.g., quartz crystal microbalance with dissipation monitoring, total internal reflection fluorescence microscopy-based particle tracking, in vitro biofilm model cultured in a flow-chamber system, and quantitative imaging analysis). Our results suggest that the mucus-inert, enzymatically cleavable TPGS shell enables the nanoparticles to penetrate through the mucus, accumulate in the deeper layer of the biofilms, and serve as sustained release depot, thereby improving the killing efficacy of azithromycin (a macrolide antibiotic) against biofilm-forming Pseudomonas aeruginosa. In conclusion, the ultrasmall TPGS-PLGA hybrid nanoparticles represent an efficient delivery system to overcome the multiple barriers and release antibiotics in a sustained manner in the vicinity of the biofilm-forming bacteria.
AB - Inhaled antibiotic treatment of cystic fibrosis-related bacterial biofilm infections is challenging because of the pathological environment of the lungs. Here, we present an "environment-adaptive" nanoparticle composed of a solid poly lactic-co-glycolic acid (PLGA) core and a mucus-inert, enzymatically cleavable shell of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for the site-specific delivery of antibiotics to bacterial biofilms via aerosol administration. The hybrid nanoparticles with ultrasmall size were self-assembled via a nanoprecipitation process by using a facile microfluidic method. The interactions of the nanoparticles with the biological barriers were comprehensively investigated by using cutting-edge techniques (e.g., quartz crystal microbalance with dissipation monitoring, total internal reflection fluorescence microscopy-based particle tracking, in vitro biofilm model cultured in a flow-chamber system, and quantitative imaging analysis). Our results suggest that the mucus-inert, enzymatically cleavable TPGS shell enables the nanoparticles to penetrate through the mucus, accumulate in the deeper layer of the biofilms, and serve as sustained release depot, thereby improving the killing efficacy of azithromycin (a macrolide antibiotic) against biofilm-forming Pseudomonas aeruginosa. In conclusion, the ultrasmall TPGS-PLGA hybrid nanoparticles represent an efficient delivery system to overcome the multiple barriers and release antibiotics in a sustained manner in the vicinity of the biofilm-forming bacteria.
KW - aerosol administration
KW - bio-nano interaction
KW - cystic fibrosis
KW - Pseudomonas aeruginosa biofilm
KW - TPGS-PLGA hybrid nanoparticles
U2 - 10.1021/acsami.9b19644
DO - 10.1021/acsami.9b19644
M3 - Journal article
C2 - 31804792
AN - SCOPUS:85077111358
VL - 12
SP - 380
EP - 389
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
SN - 1944-8244
ER -