TY - JOUR
T1 - Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization
AU - Krauel, K.
AU - Davies, N. M.
AU - Hook, S.
AU - Rades, T.
PY - 2005/8/18
Y1 - 2005/8/18
N2 - A phase diagram of the pseudoternary system ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and water with butanol as a cosurfactant was prepared. Areas containing optically isotropic, low viscosity one-phase systems were identified and systems therein designated as w/o droplet-, bicontinuous- or solution-type microemulsions using conductivity, viscosity, cryo-field emission scanning electron microscopy and self-diffusion NMR. Nanoparticles were prepared by interfacial polymerization of selected w/o droplet, bicontinuous- or solution-type microemulsions with ethyl-2- cyanoacrylate. Morphology of the particles and entrapment of the water-soluble model protein ovalbumin were investigated. Addition of monomer to the different types of microemulsions (w/o droplet, bicontinuous, solution) led to the formation of nanoparticles, which were similar in size (∼ 250 nm), polydispersity index (∼ 0.13), zeta-potential (∼- 17 mV) and morphology. The entrapment of the protein within these particles was up to 95%, depending on the amount of monomer used for polymerization and the type of microemulsion used as a polymerization template. The formation of particles with similar characteristics from templates having different microstructure is surprising, particularly considering that polymerization is expected to occur at the water-oil interface by base-catalysed polymerization. Dynamics within the template (stirring, viscosity) or indeed interfacial phenomena relating to the solid-liquid interface appear to be more important for the determination of nanoparticle morphology and characteristics than the microstructure of the template system.
AB - A phase diagram of the pseudoternary system ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and water with butanol as a cosurfactant was prepared. Areas containing optically isotropic, low viscosity one-phase systems were identified and systems therein designated as w/o droplet-, bicontinuous- or solution-type microemulsions using conductivity, viscosity, cryo-field emission scanning electron microscopy and self-diffusion NMR. Nanoparticles were prepared by interfacial polymerization of selected w/o droplet, bicontinuous- or solution-type microemulsions with ethyl-2- cyanoacrylate. Morphology of the particles and entrapment of the water-soluble model protein ovalbumin were investigated. Addition of monomer to the different types of microemulsions (w/o droplet, bicontinuous, solution) led to the formation of nanoparticles, which were similar in size (∼ 250 nm), polydispersity index (∼ 0.13), zeta-potential (∼- 17 mV) and morphology. The entrapment of the protein within these particles was up to 95%, depending on the amount of monomer used for polymerization and the type of microemulsion used as a polymerization template. The formation of particles with similar characteristics from templates having different microstructure is surprising, particularly considering that polymerization is expected to occur at the water-oil interface by base-catalysed polymerization. Dynamics within the template (stirring, viscosity) or indeed interfacial phenomena relating to the solid-liquid interface appear to be more important for the determination of nanoparticle morphology and characteristics than the microstructure of the template system.
KW - Alkylcyanoacrylate
KW - Microemulsions
KW - Nanoparticles
KW - Protein
UR - http://www.scopus.com/inward/record.url?scp=23744473464&partnerID=8YFLogxK
U2 - 10.1016/j.jconrel.2005.04.013
DO - 10.1016/j.jconrel.2005.04.013
M3 - Journal article
C2 - 15967536
AN - SCOPUS:23744473464
VL - 106
SP - 76
EP - 87
JO - Journal of Controlled Release
JF - Journal of Controlled Release
SN - 0168-3659
IS - 1-2
ER -