TY - JOUR
T1 - Validation of computed tomography as a diagnostic tool in guinea pigs with non-alcoholic fatty liver disease
AU - Lintrup, Kristine
AU - Ipsen, David Højland
AU - Skat-Rørdam, Josephine
AU - Lykkesfeldt, Jens
AU - Tveden-Nyborg, Pernille
AU - Buelund, Lene Elisabeth
N1 - Publisher Copyright:
© The Author(s) 2023.
PY - 2024
Y1 - 2024
N2 - Non-alcoholic fatty liver disease (NAFLD) and subsequent steatohepatitis (NASH) is the most common cause of liver disease and liver transplantation in humans. Affecting millions of patients worldwide, diagnosis relies on a biopsy, not without risk to the patient, and emphasises the need for improved diagnostic measures to determine and monitor disease progression. Despite intensive research, approved pharmacological treatment modalities are few, underlining that animal models with increased translational validity are important to advance preclinical drug development. This study validates the applicability of computed tomography (CT) as a non-invasive diagnostic tool for the assessment of liver steatosis in a guinea pig model of NAFLD/NASH. Guinea pigs with induced NAFLD or NASH were compared to healthy controls at two separate time points: week 16, serving as baseline measure, and week 25 to monitor disease progression over time. The animals were subsequently euthanised, and samples were collected to confirm disease stage. The data showed a strong negative correlation between liver triglycerides and Hounsfield unit (HU) values (R2 = 0.8157; p < 0.0001). A significant difference in histopathological scoring and HU values between grade 0 and more advanced stages of steatosis was recorded (p < 0.001), although the degree of liver fibrosis could not be accurately evaluated by differences in HU. In conclusion, the present study validates CT scanning for the determination of hepatic steatosis in guinea pigs, and it strongly supports the technique as a relevant non-invasive diagnostic tool in this species.
AB - Non-alcoholic fatty liver disease (NAFLD) and subsequent steatohepatitis (NASH) is the most common cause of liver disease and liver transplantation in humans. Affecting millions of patients worldwide, diagnosis relies on a biopsy, not without risk to the patient, and emphasises the need for improved diagnostic measures to determine and monitor disease progression. Despite intensive research, approved pharmacological treatment modalities are few, underlining that animal models with increased translational validity are important to advance preclinical drug development. This study validates the applicability of computed tomography (CT) as a non-invasive diagnostic tool for the assessment of liver steatosis in a guinea pig model of NAFLD/NASH. Guinea pigs with induced NAFLD or NASH were compared to healthy controls at two separate time points: week 16, serving as baseline measure, and week 25 to monitor disease progression over time. The animals were subsequently euthanised, and samples were collected to confirm disease stage. The data showed a strong negative correlation between liver triglycerides and Hounsfield unit (HU) values (R2 = 0.8157; p < 0.0001). A significant difference in histopathological scoring and HU values between grade 0 and more advanced stages of steatosis was recorded (p < 0.001), although the degree of liver fibrosis could not be accurately evaluated by differences in HU. In conclusion, the present study validates CT scanning for the determination of hepatic steatosis in guinea pigs, and it strongly supports the technique as a relevant non-invasive diagnostic tool in this species.
KW - Computed tomography
KW - guinea pig
KW - hepatic attenuation
KW - non-alcoholic steatohepatitis
U2 - 10.1177/00236772231182511
DO - 10.1177/00236772231182511
M3 - Journal article
C2 - 37999627
AN - SCOPUS:85177648609
VL - 58
SP - 127
EP - 137
JO - Laboratory Animals
JF - Laboratory Animals
SN - 0023-6772
IS - 2
ER -