Volatile organic compound emissions from subarctic mosses and lichens

Ingvild Ryde, Cleo L. Davie-Martin, Tao Li, Mads P. Naursgaard, Riikka Rinnan*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

9 Citations (Scopus)
23 Downloads (Pure)

Abstract

Plant volatile organic compound (VOC) emissions can drive important climate feedbacks. Although mosses and lichens are important components of plant communities, their VOC emissions are poorly understood. It is crucial to obtain more knowledge on moss and lichen VOCs to improve ecosystem VOC emission models. This is especially relevant at high latitudes, where mosses and lichens are abundant and VOC emissions are expected to increase in response to climate change. In this study, we examined VOC emissions from four common moss (Hylocomium splendens, Pleurozium schreberi, Sphagnum warnstorfii, and Tomentypnum nitens) and lichen (Cladonia arbuscula, Cladonia mitis, Cladonia pleurota, and Nephroma arcticum) species in the Subarctic using gas chromatography-mass spectrometry (GC-MS) and proton-transfer-reaction time-of-flight mass spectrometry. Moss and lichen VOC emissions were dominated by low molecular weight (LMW) VOCs, such as acetone and acetaldehyde, as well as hydrocarbons (HCs) and oxygenated VOCs (oVOCs). Of the studied mosses, S. warnstrofii had the highest and H. splendens had the lowest total VOC emission rates. The VOC emission blends of P. schreberi, S. warnstrofii, and T. nitens were clearly distinct from one another. Of the lichens, N. arcticum had a different VOC blend than the Cladonia spp. N. arcticum also had higher emission rates of HCs, oVOCs, and other GC-MS-based VOCs, but lower LMW VOC emission rates than the other lichen species. Our study demonstrates that mosses and lichens emit considerable amounts of various VOCs and that these emissions are species dependent.

Original languageEnglish
Article number119357
JournalAtmospheric Environment
Volume290
Number of pages12
ISSN1352-2310
DOIs
Publication statusPublished - 2022

Bibliographical note

CENPERMOA[2022]
Publisher Copyright:
© 2022 The Authors

Keywords

  • Biogenic volatile organic compounds
  • Bryophytes
  • Cryptogams
  • Terpenoids
  • Tundra
  • VOC emission

Cite this